Warm Up

1. Write a conditional from the sentence “An isosceles triangle has two congruent sides.”
 If a Δ is isosc., then it has 2 \cong sides.

2. Write the contrapositive of the conditional “If it is Tuesday, then John has a piano lesson.”
 If John does not have a piano lesson, then it is not Tuesday.

3. Show that the conjecture “If $x > 6$, then $2x > 14$” is false by finding a counterexample.
 $x = 7$
Objectives

Apply inequalities in one triangle.
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.

Theorems
Angle-Side Relationships in Triangles

<table>
<thead>
<tr>
<th>THEOREM</th>
<th>HYPOTHESIS</th>
<th>CONCLUSION</th>
</tr>
</thead>
</table>
| **5-5-1** | If two sides of a triangle are not congruent, then the larger angle is opposite the longer side.
(In \(\triangle \), larger \(\angle \) is opp. longer side.) | \(AB > BC \) | \(m\angle C > m\angle A \) |
| **5-5-2** | If two angles of a triangle are not congruent, then the longer side is opposite the larger angle.
(In \(\triangle \), longer side is opp. larger \(\angle \).) | \(XZ > XY \) | \(m\angle Z > m\angle Y \) |
Example 2A: Ordering Triangle Side Lengths and Angle Measures

Write the angles in order from smallest to largest.

The shortest side is \(\overline{GH} \), so the smallest angle is \(\angle F \).

The longest side is \(\overline{FH} \) so the largest angle is \(\angle G \).

The angles from smallest to largest are \(\angle F, \angle H \) and \(\angle G \).
Write the sides in order from shortest to longest.

\[m\angle R = 180^\circ - (60^\circ + 72^\circ) = 48^\circ \]

The smallest angle is \(\angle R \), so the shortest side is \(\overline{PQ} \).

The largest angle is \(\angle Q \), so the longest side is \(\overline{PR} \).

The sides from shortest to longest are \(\overline{PQ}, \overline{QR}, \) and \(\overline{PR} \).
Write the angles in order from smallest to largest.

The shortest side is \overline{AC}, so the smallest angle is $\angle B$.

The longest side is \overline{AB}, so the largest angle is $\angle C$.

The angles from smallest to largest are $\angle B$, $\angle A$, and $\angle C$.
Check It Out! Example 2b

Write the sides in order from shortest to longest.

\[m\angle E = 180^\circ - (90^\circ + 22^\circ) = 68^\circ \]

The smallest angle is \(\angle D \), so the shortest side is \(\overline{EF} \).

The largest angle is \(\angle F \), so the longest side is \(\overline{DE} \).

The sides from shortest to longest are \(\overline{EF}, \overline{DF}, \) and \(\overline{DE} \).
A triangle is formed by three segments, but not every set of three segments can form a triangle.

Segments with lengths of 7, 4, and 4 can form a triangle.

Segments with lengths of 7, 3, and 3 cannot form a triangle.
A certain relationship must exist among the lengths of three segments in order for them to form a triangle.

Theorem 5-5-3 Triangle Inequality Theorem

The sum of any two side lengths of a triangle is greater than the third side length.

\[
AB + BC > AC \\
BC + AC > AB \\
AC + AB > BC
\]
Example 3A: Applying the Triangle Inequality Theorem

Tell whether a triangle can have sides with the given lengths. Explain.

7, 10, 19

\[7 + 10 \nleq 19 \]
\[17 \nleq 19 \]

No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.
Example 3B: Applying the Triangle Inequality Theorem

Tell whether a triangle can have sides with the given lengths. Explain.

2.3, 3.1, 4.6

\[2.3 + 3.1 \geq 4.6 \quad 2.3 + 4.6 \geq 3.1 \quad 3.1 + 4.6 \geq 2.3 \]

\[5.4 > 4.6 \quad 6.9 > 3.1 \quad 7.7 > 2.3 \]

Yes—the sum of each pair of lengths is greater than the third length.
Example 3C: Applying the Triangle Inequality Theorem

Tell whether a triangle can have sides with the given lengths. Explain.

\(n + 6, \ n^2 - 1, \ 3n, \) when \(n = 4. \)

Step 1 Evaluate each expression when \(n = 4. \)

\[
\begin{align*}
n + 6 & \quad n^2 - 1 & \quad 3n \\
4 + 6 & \quad (4)^2 - 1 & \quad 3(4) \\
10 & \quad 15 & \quad 12
\end{align*}
\]
Example 3C Continued

Step 2 Compare the lengths.

\[
10 + 15 \gtrsim 12 \quad 10 + 12 \gtrsim 15 \quad 15 + 12 \gtrsim 10
\]

\[
25 > 12 \checkmark \quad 22 > 15 \checkmark \quad 27 > 10 \checkmark
\]

Yes—the sum of each pair of lengths is greater than the third length.
Tell whether a triangle can have sides with the given lengths. Explain.

8, 13, 21

\[8 + 13 \geq 21 \]
\[21 \neq 21 \]

No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.
Tell whether a triangle can have sides with the given lengths. Explain.

6.2, 7, 9

\[6.2 + 7 > 9\] \[13.2 > 9\] ✔
\[6.2 + 9 > 7\] \[15.2 > 7\] ✔
\[7 + 9 > 6.2\] \[16 > 6.2\] ✔

Yes—the sum of each pair of lengths is greater than the third side.
Tell whether a triangle can have sides with the given lengths. Explain.

\(t - 2, 4t, t^2 + 1, \) when \(t = 4 \)

Step 1 Evaluate each expression when \(t = 4 \).

\[
\begin{array}{ccc}
 t - 2 & 4t & t^2 + 1 \\
 4 - 2 & 4(4) & (4)^2 + 1 \\
 2 & 16 & 17 \\
\end{array}
\]
Step 2 Compare the lengths.

\[2 + 16 \geq 17 \quad 2 + 17 \geq 16 \quad 16 + 17 \geq 2 \]

\[18 > 17 \, \checkmark \quad 19 > 16 \, \checkmark \quad 33 > 2 \, \checkmark \]

Yes—the sum of each pair of lengths is greater than the third length.
Example 4: Finding Side Lengths

The lengths of two sides of a triangle are 8 inches and 13 inches. Find the range of possible lengths for the third side.

Let \(x \) represent the length of the third side. Then apply the Triangle Inequality Theorem.

\[
\begin{align*}
 x + 8 &> 13 \\
 x + 13 &> 8 \\
 8 + 13 &> x \\
 x &> 5 \\
 x &> -5 \\
 21 &> x
\end{align*}
\]

Combine the inequalities. So \(5 < x < 21 \). The length of the third side is greater than 5 inches and less than 21 inches.
The lengths of two sides of a triangle are 22 inches and 17 inches. Find the range of possible lengths for the third side.

Let x represent the length of the third side. Then apply the Triangle Inequality Theorem.

\[
x + 22 > 17 \quad x + 17 > 22 \quad 22 + 17 > x \\
x > -5 \quad x > 5 \quad 39 > x
\]

Combine the inequalities. So $5 < x < 39$. The length of the third side is greater than 5 inches and less than 39 inches.
Lesson Quiz: Part I

1. Write the angles in order from smallest to largest.
 \[\angle C, \angle B, \angle A\]

2. Write the sides in order from shortest to longest.
 \[\overline{DE}, \overline{EF}, \overline{DF}\]
3. The lengths of two sides of a triangle are 17 cm and 12 cm. Find the range of possible lengths for the third side.
 \[5 \text{ cm} < x < 29 \text{ cm} \]

4. Tell whether a triangle can have sides with lengths 2.7, 3.5, and 9.8. Explain.
 \[\text{No; } 2.7 + 3.5 \text{ is not greater than } 9.8. \]